Piezoelectric Ceramics Characterization
نویسنده
چکیده
This review explores piezoelectric ceramics analysis and characterization. The focus is on polycrystalline ceramics; therefore, single crystals, polymeric materials and organic/inorganic composites are outside the scope of this review. To thoroughly grasp the behavior of a piezoelectric polycrystalline ceramic, a basic understanding of the ceramic itself should not be overlooked. To this end, we have presented a brief introduction of the history of piezoelectricity and a discussion on processing of the ceramic and development of the constitutive relations that define the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.
منابع مشابه
Numerical Characterization of Piezoceramics Using Resonance Curves
Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If los...
متن کاملFerroelectric Domain Structure and Local Piezoelectric Properties of Lead-Free (Ka0.5Na0.5)NbO3 and BiFeO3-Based Piezoelectric Ceramics
Recent advances in the development of novel methods for the local characterization of ferroelectric domains open up new opportunities not only to image, but also to control and to create desired domain configurations (domain engineering). The morphotropic and polymorphic phase boundaries that are frequently used to increase the electromechanical and dielectric performance of ferroelectric ceram...
متن کاملRevisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance
Electronic devices using the piezoelectric effect contain piezoelectric materials: often crystals, but in many cases poled ferroelectric ceramics (piezoceramics), polymers or composites. On the one hand, these materials exhibit non-negligible losses, not only dielectric, but also mechanical and piezoelectric. In this work, we made simulations of the effect of the three types of losses in piezoe...
متن کاملNon-linear Properties of Piezoelectric Ceramics
Sensors and actuators based on piezoelectric ceramics are finding an increasingly large variety of applications under a very wide range of environmental conditions and applied signals. Some actuator applications require the piezoelectric materials to support large mechanical loads and produce high strain output. In order to accomplish this requirement of higher strains, large electric fields mu...
متن کاملAdvances in the Growth and Characterization of Relaxor-PT-Based Ferroelectric Single Crystals
Compared to Pb(Zr1−xTix)O3 (PZT) polycrystalline ceramics, relaxor-PT single crystals offer significantly improved performance with extremely high electromechanical coupling and piezoelectric coefficients, making them promising materials for piezoelectric transducers, sensors and actuators. The recent advances in crystal growth and characterization of relaxor-PT-based ferroelectric single cryst...
متن کامل